3.658 \(\int \sqrt{d+e x} \sqrt{a+c x^2} \, dx\)

Optimal. Leaf size=362 \[ -\frac{4 \sqrt{-a} d \sqrt{\frac{c x^2}{a}+1} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right ),-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 \sqrt{c} e^2 \sqrt{a+c x^2} \sqrt{d+e x}}+\frac{4 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} \left (c d^2-3 a e^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 \sqrt{c} e^2 \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{2 \sqrt{a+c x^2} (d+e x)^{3/2}}{5 e}-\frac{4 d \sqrt{a+c x^2} \sqrt{d+e x}}{15 e} \]

[Out]

(-4*d*Sqrt[d + e*x]*Sqrt[a + c*x^2])/(15*e) + (2*(d + e*x)^(3/2)*Sqrt[a + c*x^2])/(5*e) + (4*Sqrt[-a]*(c*d^2 -
 3*a*e^2)*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)
/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*Sqrt[c]*e^2*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^
2]) - (4*Sqrt[-a]*d*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*Ell
ipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*Sqrt[c]*e^2*S
qrt[d + e*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.298611, antiderivative size = 362, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {735, 833, 844, 719, 424, 419} \[ -\frac{4 \sqrt{-a} d \sqrt{\frac{c x^2}{a}+1} \left (a e^2+c d^2\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 \sqrt{c} e^2 \sqrt{a+c x^2} \sqrt{d+e x}}+\frac{4 \sqrt{-a} \sqrt{\frac{c x^2}{a}+1} \sqrt{d+e x} \left (c d^2-3 a e^2\right ) E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 \sqrt{c} e^2 \sqrt{a+c x^2} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{-a} e+\sqrt{c} d}}}+\frac{2 \sqrt{a+c x^2} (d+e x)^{3/2}}{5 e}-\frac{4 d \sqrt{a+c x^2} \sqrt{d+e x}}{15 e} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]*Sqrt[a + c*x^2],x]

[Out]

(-4*d*Sqrt[d + e*x]*Sqrt[a + c*x^2])/(15*e) + (2*(d + e*x)^(3/2)*Sqrt[a + c*x^2])/(5*e) + (4*Sqrt[-a]*(c*d^2 -
 3*a*e^2)*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)
/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*Sqrt[c]*e^2*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^
2]) - (4*Sqrt[-a]*d*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*Ell
ipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*Sqrt[c]*e^2*S
qrt[d + e*x]*Sqrt[a + c*x^2])

Rule 735

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + 2*p + 1)), x] + Dist[(2*p)/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[a*e - c*d*x, x]*(a + c*x^2)^(p - 1),
 x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !Ration
alQ[m] || LtQ[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 833

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(g*(d + e*x)
^m*(a + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*
Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, p
}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \sqrt{d+e x} \sqrt{a+c x^2} \, dx &=\frac{2 (d+e x)^{3/2} \sqrt{a+c x^2}}{5 e}+\frac{2 \int \frac{(a e-c d x) \sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx}{5 e}\\ &=-\frac{4 d \sqrt{d+e x} \sqrt{a+c x^2}}{15 e}+\frac{2 (d+e x)^{3/2} \sqrt{a+c x^2}}{5 e}+\frac{4 \int \frac{2 a c d e-\frac{1}{2} c \left (c d^2-3 a e^2\right ) x}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx}{15 c e}\\ &=-\frac{4 d \sqrt{d+e x} \sqrt{a+c x^2}}{15 e}+\frac{2 (d+e x)^{3/2} \sqrt{a+c x^2}}{5 e}+\frac{1}{15} \left (2 \left (3 a-\frac{c d^2}{e^2}\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a+c x^2}} \, dx+\frac{1}{15} \left (2 d \left (a+\frac{c d^2}{e^2}\right )\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{a+c x^2}} \, dx\\ &=-\frac{4 d \sqrt{d+e x} \sqrt{a+c x^2}}{15 e}+\frac{2 (d+e x)^{3/2} \sqrt{a+c x^2}}{5 e}+\frac{\left (4 a \left (3 a-\frac{c d^2}{e^2}\right ) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{15 \sqrt{-a} \sqrt{c} \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{a+c x^2}}+\frac{\left (4 a d \left (a+\frac{c d^2}{e^2}\right ) \sqrt{\frac{c (d+e x)}{c d-\frac{a \sqrt{c} e}{\sqrt{-a}}}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 a \sqrt{c} e x^2}{\sqrt{-a} \left (c d-\frac{a \sqrt{c} e}{\sqrt{-a}}\right )}}} \, dx,x,\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )}{15 \sqrt{-a} \sqrt{c} \sqrt{d+e x} \sqrt{a+c x^2}}\\ &=-\frac{4 d \sqrt{d+e x} \sqrt{a+c x^2}}{15 e}+\frac{2 (d+e x)^{3/2} \sqrt{a+c x^2}}{5 e}-\frac{4 \sqrt{-a} \left (3 a-\frac{c d^2}{e^2}\right ) \sqrt{d+e x} \sqrt{1+\frac{c x^2}{a}} E\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 \sqrt{c} \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{a+c x^2}}-\frac{4 \sqrt{-a} d \left (a+\frac{c d^2}{e^2}\right ) \sqrt{\frac{\sqrt{c} (d+e x)}{\sqrt{c} d+\sqrt{-a} e}} \sqrt{1+\frac{c x^2}{a}} F\left (\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|-\frac{2 a e}{\sqrt{-a} \sqrt{c} d-a e}\right )}{15 \sqrt{c} \sqrt{d+e x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 2.88824, size = 536, normalized size = 1.48 \[ \frac{\sqrt{d+e x} \left (\frac{2 \left (a+c x^2\right ) (d+3 e x)}{e}-\frac{4 \left (-\sqrt{a} \sqrt{c} e (d+e x)^{3/2} \left (4 i \sqrt{a} \sqrt{c} d e-3 a e^2+c d^2\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right ),\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )+e^2 \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}} \left (-3 a^2 e^2+a c \left (d^2-3 e^2 x^2\right )+c^2 d^2 x^2\right )+\sqrt{c} (d+e x)^{3/2} \left (-3 a^{3/2} e^3+\sqrt{a} c d^2 e+3 i a \sqrt{c} d e^2-i c^{3/2} d^3\right ) \sqrt{\frac{e \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{d+e x}} \sqrt{-\frac{-e x+\frac{i \sqrt{a} e}{\sqrt{c}}}{d+e x}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}{\sqrt{d+e x}}\right )|\frac{\sqrt{c} d-i \sqrt{a} e}{\sqrt{c} d+i \sqrt{a} e}\right )\right )}{c e^3 (d+e x) \sqrt{-d-\frac{i \sqrt{a} e}{\sqrt{c}}}}\right )}{15 \sqrt{a+c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]*Sqrt[a + c*x^2],x]

[Out]

(Sqrt[d + e*x]*((2*(d + 3*e*x)*(a + c*x^2))/e - (4*(e^2*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(-3*a^2*e^2 + c^2*d^2
*x^2 + a*c*(d^2 - 3*e^2*x^2)) + Sqrt[c]*((-I)*c^(3/2)*d^3 + Sqrt[a]*c*d^2*e + (3*I)*a*Sqrt[c]*d*e^2 - 3*a^(3/2
)*e^3)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x
)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c
]*d + I*Sqrt[a]*e)] - Sqrt[a]*Sqrt[c]*e*(c*d^2 + (4*I)*Sqrt[a]*Sqrt[c]*d*e - 3*a*e^2)*Sqrt[(e*((I*Sqrt[a])/Sqr
t[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticF[I*ArcSinh[Sqr
t[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(c*e^3*Sq
rt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(d + e*x))))/(15*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.244, size = 1162, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)*(c*x^2+a)^(1/2),x)

[Out]

2/15*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*(6*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(
1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d
))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a^2*e^4+6*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)
*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*Elliptic
F((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d^2*e^2-2*(-
(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e
/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^
(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*a*d*e^3-2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-
a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticF((-(e*x+d)*c/((-a*c)^(1/2)
*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*(-a*c)^(1/2)*c*d^3*e-6*(-(e*x+d)*c/((-a*c)^
(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c
*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2
))*a^2*e^4-4*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+
(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*
e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*a*c*d^2*e^2+2*(-(e*x+d)*c/((-a*c)^(1/2)*e-c*d))^(1/2)*((-c*x+(-a*c)^(1/2))
*e/((-a*c)^(1/2)*e+c*d))^(1/2)*((c*x+(-a*c)^(1/2))*e/((-a*c)^(1/2)*e-c*d))^(1/2)*EllipticE((-(e*x+d)*c/((-a*c)
^(1/2)*e-c*d))^(1/2),(-((-a*c)^(1/2)*e-c*d)/((-a*c)^(1/2)*e+c*d))^(1/2))*c^2*d^4+3*x^4*c^2*e^4+4*x^3*c^2*d*e^3
+3*x^2*a*c*e^4+x^2*c^2*d^2*e^2+4*x*a*c*d*e^3+a*c*d^2*e^2)/c/(c*e*x^3+c*d*x^2+a*e*x+a*d)/e^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{2} + a} \sqrt{e x + d}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)*(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)*sqrt(e*x + d), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{c x^{2} + a} \sqrt{e x + d}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)*(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + a)*sqrt(e*x + d), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + c x^{2}} \sqrt{d + e x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)*(c*x**2+a)**(1/2),x)

[Out]

Integral(sqrt(a + c*x**2)*sqrt(d + e*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{2} + a} \sqrt{e x + d}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)*(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + a)*sqrt(e*x + d), x)